Date: _____

Practice Problems for Honors Math 2 Placement Test. Guidelines: All of these problems should be done without the aid of a calculator and should not take longer than an hour to complete.

1. Simplify: $5y^2z + 3xy^2 - 2y^2z$

2. Solve for *x*: 6 - 3(x - 5) = 7 - 10x

3. Solve for *x*: $-5x + 4 \le 34$

4. For equation below, state if it was solved correctly or at what step the error was made (if error then solve correctly). Circle letter A, B, C, D, or E and if an error was made, solve correctly.

	5(x-2) - 4 = 2(x+3) - 11	A. solution is correct
Step 1:	5x - 10 - 4 = 2x + 6 - 11	B. Error is step 1
Step 2:	5x - 6 = 2x + 17	C. Error in step 2
Step 3:	3x = 23	D. Error in step 3
Step 4:	$x = \frac{23}{3}$	E. Error in step 4

9. Write a function that would work to represent all the values in the table.

Α.	x	0	1	2	3	4
	f(x)	5	5	5	5	5

В.	x	0	1	2	3	4
	f(x)	5	6	7	8	9

10. The amount of water in a tank, in gallons, is a function of time, in hours, shown at the right. State is the statement is **true or false.**

- A. The tank is empty in 11 hours. _
- B. The maximum amount of water in the tank is 11 gal. ____
- C. The maximum amount of water in the tank is 110 gal. _____
- D. The rate of change in the amount of water in the tank is decreasing at 10 gal per hour. _____
- E. At time 6 hours there is 50 gal in the tank.
- F. At time 90 hours there is 2 gal in the tank.

- 11. For the graph at the right, state whether the Statement is **TRUE** or **FALSE**.
 - A. A, B, and D are solutions of f(x).
 - B. B is the solution of f(x) = g(x).
 - C. C is the y intercept of f(x).
 - D. D is on f(x) when f(x) > g(x).
 - E. E is the x intercept of g(x).
 - F. A is on f(x) when f(x) < g(x).

- G. There is an infinite number of points and solutions on f(x) even though there are only three points labeled.
- 12. The graph of f(x) is shown. Determine the ordered pair that is a solution to the equation represented by f(x) = 0.

13. Is the statement true or false? a. f(x) < g(x) when x < 1b. f(x) < g(x) when x > 1c. f(x) > g(x) when x > 1d. f(x) > g(x) when x < 1e. f(x) = g(x) when x = 1f. f(x) = g(x) when x = -2

14. Solve for *x*:
$$\frac{1}{4}x + \frac{1}{3}x = \frac{7}{4}$$

15. Solve the inequality for *x*: 6(x - 10) > 30

16. Solve the inequality for *x*: 3x - 2(x - 5) < 7(x + 4)

17. Solve for *x*: $\frac{x}{12} = \frac{-5}{3}$

18. Solve for *x*: $\frac{-7}{x} = \frac{3}{4}$

19. Rewrite the expression in terms of a singular base to an exponent: $3^5 \times 3^5 =$

20. Simplify:

$$\left(\frac{1}{3} + \frac{1}{5} + \frac{1}{15}\right)^{-1}$$

21. If 3 students have an average of \$20 each, and 2 other students have an average of \$10 each, then what is the average of amount of money per student?

22. A straight line that passes through the points (2, 3) and (3, 1) must also pass through the point

- A. (5, 4)
- B. (4, 5)
- C. (4, 0)
- D. (4, -1)
- 23. Simplify: $1^7 + 1^7 =$
- 24. a. Give the domain where the graph is *increasing*.b. Give the domain where the graph is *decreasing*.

25. Simplify: $2 + 3(6 - 1)^2 \div 7$

26. Simplify: $\frac{2}{3} - \frac{1}{2} \left(\frac{1}{3}\right)^2$

- 27. Simplify: |-b|
- 28. For 5x + 2y = 10, find the x and y intercepts.
- 29. Change 5x + 2y = 10 to slope and y intercept form, that is y = mx + b.
State the slope and y intercept. Graph the line using the slope and y intercept.Slope _____
Y-intercept _____4

30. Solve x + 2y = -7 and -2x + y = 6 algebraically and graphically.

